
ACCU 2009

legacy
code

learning to live with it

Pete Goodliffe
pete@goodliffe.net

1

legacy code learning to live with it pete goodliffe

Pete Goodliffe
A programmer, a columnist, an
author, a teacher. Someone who
cares about code. Books: Code
Craft, Beautiful Architecture.

www.goodliffe.net
goodliffe.blogspot.com

Pete Goodliffe
pete@goodliffe.net

2

legacy code learning to live with it pete goodliffe

Adam

Eve

3

legacy code learning to live with it pete goodliffe

most software is

4

most software is

5

6

Legacy code. You can't live with it. You can't live without it.

Well, you can't avoid it, at least. Spend long enough in the software factory,
and you'll inevitably run into other people's old code. And of course, none
of this old stuff is any good. It's nothing like the high quality software
you craft. Pure tripe.

Let's be honest, sometimes you might even stumble across some of your own
old code, and embarrassing as it is, you have to admit that you don't know
how it works, let alone how to fix it.

This presentation will look at practical strategies for working with “old”
crufty code. We'll see how to:

! start working with a completely unfamiliar codebase

! understand old spaghetti programming

! make correct modifications

! prevent bad code from causing more pain in the future

legacy code learning to live with it pete goodliffe

talk synopsis

7

plan of attack
! what is legacy code
! how to understand it
! how to modify it

legacy code learning to live with it pete goodliffe

8

plan of attack
! what is legacy code
! how to understand it
! how to modify it

legacy code learning to live with it pete goodliffe

9

legacy (noun)

1. Law. a gift of property, esp.
 personal property, as money, by
 will; a bequest.
2. anything handed down from
 the past, as from an ancestor or
 predecessor: the legacy of
 ancient Rome. ?

10

w
ha

t is le
g

a
c

y c
o

d
e

?

Old code

Any existing code

Out-o
f-d

ate code

Code you didn’t w
rite

No longer supported by supplier

From a previous product version

Code without te
sts

Uses old technology

“Bad” code ?
11

There is a lot of legacy
code being written

right now ?
12

?
why do we care?

! R
equirements change

Old code needs to be extended

! B
ugs are discovered

Old code needs to be fix
ed

! T
echnology changes

Old code needs to be ported

13

is it actually bad?
not necessarily *

* terms and conditions apply
14

who works with it?
muggins here

skills >>

(good luck with that)

15

helpful traits
! bravery

16

helpful traits
! bravery
! memory

17

helpful traits
! bravery
! memory
! methodicalness(osity)

18

helpful traits
! bravery
! memory
! methodicalness(osity)
! imagination

19

helpful traits
! bravery
! memory
! methodicalness(osity)
! imagination

20

helpful traits
! bravery
! memory
! methodicalness(osity)
! imagination
! patience
! intelligence
! empathy
! experience
! persistence
! curiosity
! application
! dedication

21

plan of attack
! what is legacy code
! how to understand it
! how to modify it

legacy code learning to live with it pete goodliffe

22

<< understanding

modifying >>

23

Everything that irritates us
about others can lead us to
a better understanding of

ourselves.

Carl Jung (1875 - 1961)

24

http://www.quotationspage.com/quotes/Carl_Jung/
http://www.quotationspage.com/quote/39788.html
http://www.quotationspage.com/quote/39788.html
http://www.quotationspage.com/quote/39788.html
http://www.quotationspage.com/quote/39788.html
http://www.quotationspage.com/quote/39788.html
http://www.quotationspage.com/quote/39788.html
http://www.quotationspage.com/quote/39788.html
http://www.quotationspage.com/quote/39788.html
http://www.quotationspage.com/quotes/Carl_Jung/

you have to understand

! the software you are changing

! the changes you must make

! the code you are changing

! how to approach the code

25

(software)
understand: the software

! what type of software is it?
! e.g. shrinkwrap, server, bespoke

! what does it do?

! what does it do? really?

! have you used it?

! how is it tested?
! what QA is there?

! is there documentation?

! are there manuals?

! gauge the quality (e.g. bug count, reliability)

26

(people)
understand: the software

! who has domain expertise?
! do you need domain expertise?

! who wrote it?

! who owns it?

! what’s the license?

! who are the users?
! are they technical?

! have they been involved in development?

27

(claptrap)
understand: the software

! what platform(s) does it run on?

! how is it deployed?

! what dev processes is it encumbered by?

28

(changes)
understand: the software

! where is it stored?

! change control

! where is the repository (what system)

! trunk/branching strategy
! feature/release/personal branching

! who can commit, when
! who else is working on the same branch as you?

! can you break build?

29

(malarkey)
understand: the software

! other procedural tools

! bug tracker?
! bug management process?

! who manages?

! who hands out bugs?

! who gives you an account?

! continuous integration

! testing process
! how thorough?

! is it automated?

30

(attitude)
understand: your approach

the right attitude

Weakness of attitude becomes weakness of character.
Albert Einstein

! don’t freak out!

! someone once understood it

! conquer disgust

! you can improve it

31

(strategise)
understand: your approach

strategise

become effective by being selective

! how much time do you have to work with it?

! affects how you work a route through it

! how long will you be working with it for?

! how much of it do you need to know?

32

understand: the changes

(mission)what do you have to do?

Do not, for one repulse, forego the purpose that you
resolved to effect.

William Shakespeare, ‘The Tempest’

! what was the old behaviour?

! what will the new behaviour be?

! how will you know you are done?

33

http://www.quotationspage.com/quotes/William_Shakespeare/
http://www.quotationspage.com/quotes/William_Shakespeare/

understand: the changes

(mission)what do you have to do?

! is it a single coding task?

! or ongoing work in the system?
! drive-by programming?!

! will you take responsibility for whole section of
code?

! are you on a schedule?
! do you agree with work packages?

34

understand: the code

(the code)this is the real task: mapping the software

! the usual approach: guesswork

! a better approach: structured investigation

35

understand: the code

this is the real task: mapping the software

! the usual approach: guesswork

! a better approach: structured investigation

36

(the map)
understand: the code

#1: the basic facts

! the language(s)
! and the language version (e.g. C# 2.0, C89, Python 2.0)

! the size
! LOC, classes, files, age (does this seem in keeping with project?)

! the build technology
! check every build variant

! how its deployed

! main technologies
! libraries

! database(s)?

! design tools

! validation/QA tools

! external dependencies

37

(the map)
understand: the code

build it. now.
! don’t go any further until you’ve got it cleanly built and running

! only then can you modify anything sanely

38

(the map)
understand: the code

find your route in

! is the code structure
! data-centric

! control-centric

! does the system decompose into parts?
! for separate build

! for separate use

! which bits do you need to look at now?

! can you ask someone?

39

(the map)
understand: the code

find your route in

gauge the quality >>
as you find a route

40

mapping by guesswork

! t
he fir

st resort

! w
hat do you think it s

hould look lik
e?

! w
hat subsectio

ns do you expect to
 fin

d?

! b
uild a mental m

odel: y
our map

operating system

databaseav libs

business logic

user interface

41

mapping by interface

! i
dentify

 interface points

! t
he places in system where subsystems interface

! t
he nature of th

e interfaces

! t
echnology, style, quality

, breadth

! h
igh-level / low-level

! r
efin

e your map

operating system

databaseav libs

user interface &
business logic

mp3

operating system

database

ui/bl goo

aac wav

media access db veneer

42

mapping by file
 structure

! c
an give a valuable insight

! e
ith

er shows internal structure of project

! o
r lack of in

ternal structure of project

! c
lues for quality

 of project

!t
he process:

1. fin
d the code

2. plot th
e directory structure

3. Q
ED

! d
oes it m

atch project structure?

! r
ecognise common structures

! G
NU project shape

! I
DEs

43

mapping by section

! d
etermine how “sectio

ns” separate

! d
o they separate?

! h
igh level

! p
rograms

! t
hreads

! l
ibraries

! p
rojects

! l
ow level

! n
amespaces

! p
ackages

! n
aming conventio

ns

! c
omment m

arkup

! s
ometim

es this isn’t o
bvious until

you’ve worked with
 the project

async audio async audio

sync audio
(real time)

dbdb

ui

44

mapping by dependency

! c
an you see architectural m

odel?

! l
ayered, component, p

ipe/filt
er

! d
o dependencies match?

! t
race dependencies with

 tools

! f
ollow #includes, im

ports

! c
all g

raphs

! q
uality

 of dependency

! t
ied to quality

 of in
terface

! c
ohesion / coupling

! m
aps effect propagatio

n

45

mapping by control flo
w

! w
here is the entry point?

! w
here is the “main” hub of control?

! l
inear, batch process

! e
vent lo

op

! m
essage queue

! a
pp framework, component in

terface

! i
s it t

hreaded?

! h
ow well c

ontrolled are the threads?

! i
s it a

ctually thread safe?

! i
s it c

lear what can & can’t b
e concurrent?

! t
hread prioritie

s

46

mapping by history

! t
he age of th

e code

! w
hen was it s

tarted?

! w
hen was it l

ast m
odifie

d?

! m
ine revision control

! w
ho wrote it

! o
ne author / many authors?

! d
o you have the latest version?

! w
hat branch are you working on?

! d
o other branches have interestin

g (u
seful) s

tuff?

! t
he source it c

ame from originally

! d
ownload / vendor / other team

! w
here it i

s going?

! i
nternal, r

esubmit u
pstream, publish to lic

ensees

47

select mapping tools

! command line

! graphical

! programatic

48

command line tools

! wc -l

! grep (-i)

! find (-name)

! xargs

! piping

! ls -hF --color -R

! find . -name “*.h” -o -name “*.c” | xargs cat | wc -l

! find . -name “*.h” -o -name “*.c” | xargs grep -i “usb_debug”

! cygwin

! ctags (excuberant ctags)

! mlcscope

49

graphical tools

! code visualisation (modeling)

! doxygen, Ndoc

! a good IDE

! profiler

! debugger (not so good in large projects)

! understand for C++

testing

! static analysis
! code test (lints, gcc -Wall)

! code coverage (clover, coverlipse)

! purify

! valgrind
! (memcheck, cachegrind, callgrind, kcachegrind, etc)

50

programatic tools

! unit test frameworks

! continuous integration

! refactor-capable editor

! source control

51

(the map)
understand: the code

keep notes

! notebook

! wiki

! text files

-diagrams
-keep them updated

-what’s wrong
-bits that don’t fit
-things to look at later in

more detail
-bits to fix later
-record progress
-unanswered questions

52

(the map)
understand: the code

gauge quality

! structure
! appropriateness

! cohesion/coupling

! single responsibility

! code quality
! readability

! for separate use

! the build
! ease of building

! documentation

! automated (automatable)

! does it build without warnings?

53

(the caution)remember, this is not an
event, its an ongoing

process

54

plan of attack
! what is legacy code
! how to understand it
! how to modify it

legacy code learning to live with it pete goodliffe

55

this is the easy bit
well, not really

56

your mission
! make the changes

! don’t break anything

! improve the code on the way

57

your mission
! what are the requirements?

! one task at a time

! what else do you need to do?

! fix bugs
! refactor
! integrate

! one task at a time

58

! one task at a time

59

stra
te

g
ise

Pinpoint th
e code to change

Note locations for change

Down to exact fu
nction(s)

What else might be affected by changes?

Are you changing interfaces?

What kind of change is appropriate

Wee fertle

Open heart surgery

Rip up and replace

Maintain old interface?

Experiment: tr
y prototypes

60

write the code

61

write the code
but that’s a different talk...

follow these rules >>

62

rule #1: code tact

! F
ollow the existing style

Layout, n
aming, lib

raries

Add lib
raries carefully

! R
espect earlier programmers

Whether still
around or not

! T
reat th

e code carefully

It’s
 a fragile beast

Be polite
 to it

! D
on’t a

sk too much of th
e code

One thing at a tim
e

63

rule #2: know who to trust

! Don’t trust the build system

Rebuild, make clean, dependencies

Especially if has custom steps

! Not the earlier programmers

Keep the benefit of the doubt

! Not the specifications

Documents get outdated

! Only the code
What it does right now

Know how to ask it

64

ru
le

 #
3:

cl
os

e
th

e
fe

ed
ba

ck
 lo

op

! Build it. Run it. Test it. Repeat.

How long does it take?

! Break it
Just to prove you’ve changed it

! Do one thing at a tim
e

Then you know what m
ade the

change
! Construct a test environm

ent

Don’t stab in the dark

65

ru
le

 #
3:

cl
os

e
th

e
fe

ed
ba

ck
 lo

op

! Avoid switching out

Speed up turnaround

Helps you get into flow

Enables experim
entation

Prevents errors

Slow turnaround kills developm
ent

Encourages m
ultiple sim

ultaneous changes

Switching tasks between builds

66

ru
le

 #
3:

cl
os

e
th

e
fe

ed
ba

ck
 lo

op

! Prove your changes work

Nothing was broken

New functionality works

You have done what was required

! How do you do this?

testingNeeds a good covering

! unit tests

! acceptance tests

67

(tests)! don’t need to create 100% test coverage!

! more tests better than fewer

! broad coverage for main parts of functionality
! a few broad tests probably more effective than many narrow ones

! targeted tests for the piece you’re changing

! test-first for new code

! adding tests is not easy
! break out mockable interfaces

! find/create seams to inspect behaviour

! refactor

! easier for OO code than procedural

! explore existing functionality
! capture them in tests!

68

rule #4:

meddle methodically

! T
idy the house

Don’t le
ave commented out code

Delete unnecessary/old code

Comment clearly

Leave it a
s you’d lik

e to liv
e in

! M
inimise intrusion

Only change what is
 necessary

Break out in
terfaces for change

Wrap and extend

Sprout fu
nctionality

! L
aziness: le

an on the compiler

Let th
e compiler help you make

changes

69

rule #4:

meddle methodically

! T
idy the house

Don’t le
ave commented out code

Delete unnecessary/old code

Comment clearly

Leave it a
s you’d lik

e to liv
e in

! M
inimise intrusion

Only change what is
 necessary

Break out in
terfaces for change

Wrap and extend

Sprout fu
nctionality

! L
aziness: le

an on the compiler

Let th
e compiler help you make

changes

class Frog
{
 void Paint(Colour c);
 Food FavouriteFood() const;
};

70

rule #4:

meddle methodically

! T
idy the house

Don’t le
ave commented out code

Delete unnecessary/old code

Comment clearly

Leave it a
s you’d lik

e to liv
e in

! M
inimise intrusion

Only change what is
 necessary

Break out in
terfaces for change

Wrap and extend

Sprout fu
nctionality

! L
aziness: le

an on the compiler

Let th
e compiler help you make

changes

class Frog
{
 void Paint(Colour c);
 Food FavouriteFood() const;
 static Colour GetLivery(Food f);
};

71

rule #4:

meddle methodically

! T
idy the house

Don’t le
ave commented out code

Delete unnecessary/old code

Comment clearly

Leave it a
s you’d lik

e to liv
e in

! M
inimise intrusion

Only change what is
 necessary

Break out in
terfaces for change

Wrap and extend

Sprout fu
nctionality

! L
aziness: le

an on the compiler

Let th
e compiler help you make

changes

class Frog
{
 void Paint(Colour c);
 Food FavouriteFood() const;
 static Colour GetLivery(Food f);
};

Colour c = Frog::GetLivery(freddie.FavouriteFood());
freddie.Paint(c);

72

rule #4:

meddle methodically

! T
idy the house

Don’t le
ave commented out code

Delete unnecessary/old code

Comment clearly

Leave it a
s you’d lik

e to liv
e in

! M
inimise intrusion

Only change what is
 necessary

Break out in
terfaces for change

Wrap and extend

Sprout fu
nctionality

! L
aziness: le

an on the compiler

Let th
e compiler help you make

changes

class Frog
{
 void Paint(Colour c);
 Food FavouriteFood() const;
 static Colour GetLivery(Food f);
};

Colour c = Frog::GetLivery(freddie.FavouriteFood());
freddie.Paint(c);

73

rule #4:

meddle methodically

! T
idy the house

Don’t le
ave commented out code

Delete unnecessary/old code

Comment clearly

Leave it a
s you’d lik

e to liv
e in

! M
inimise intrusion

Only change what is
 necessary

Break out in
terfaces for change

Wrap and extend

Sprout fu
nctionality

! L
aziness: le

an on the compiler

Let th
e compiler help you make

changes

class Frog
{
 void XXX_Paint(Colour c);
 void PaintInLivery();
 Food FavouriteFood() const;
 static Colour GetLivery(Food f);
};

Colour c = Frog::GetLivery(freddie.FavouriteFood());
freddie.Paint(c); //< fails to compile

74

rule #4:

meddle methodically

! T
idy the house

Don’t le
ave commented out code

Delete unnecessary/old code

Comment clearly

Leave it a
s you’d lik

e to liv
e in

! M
inimise intrusion

Only change what is
 necessary

Break out in
terfaces for change

Wrap and extend

Sprout fu
nctionality

! L
aziness: le

an on the compiler

Let th
e compiler help you make

changes

class Frog
{
 void XXX_Paint(Colour c);
 void PaintInLivery();
 Food FavouriteFood() const;
 static Colour GetLivery(Food f);
};

freddie.PaintInLivery();

75

rule #4:

meddle methodically

! T
idy the house

Don’t le
ave commented out code

Delete unnecessary/old code

Comment clearly

Leave it a
s you’d lik

e to liv
e in

! M
inimise intrusion

Only change what is
 necessary

Break out in
terfaces for change

Wrap and extend

Sprout fu
nctionality

! L
aziness: le

an on the compiler

Let th
e compiler help you make

changes

class Frog
{
 void Paint(Colour c);
 void PaintInLivery();
 Food FavouriteFood() const;
 static Colour GetLivery(Food f);
};

freddie.PaintInLivery();

76

! code tact
! trust the code
! close the feedback loop
! meddle methodically

how to modify it

77

plan of attack
! what is legacy code
! how to understand it
! how to modify it

legacy code learning to live with it pete goodliffe

78

lessons to learn

legacy code learning to live with it pete goodliffe

! new code becomes old instantly
! write code that’s easy to modify
! prevent errors in the future

! leave a legacy: test suite
! make your code heard to misinterpret

! strive for clear interfaces and sound structure
! file structure follows code structure
! increase development speed
! take small verifiable steps: one thing at a time
! learn from legacy code to make new code better

79

further reading

80

legacy code learning to live with it pete goodliffe

the end

Pete Goodliffe
pete@goodliffe.net

81

